Sorry, auch Datenanalysen sind nicht der Heilige Gral der Objektivität

Datenanalysen sind nicht neutral: Jede Entscheidung über Variablen oder Methodik ist schlussendlich auch eine inhaltliche Entscheidung. Das zeigt anschaulich eine Studie, über die das Spektrum Magazin schreibt:

Bekommen schwarze Fußballspieler häufiger rote Karten als Nicht-Schwarze? Das war die Frage, auf die Forscherinnen und Forscher 29 verschiedene Antworten gaben. Die Ergebnisse unterscheiden sich zum Teil deutlich und widersprachen sich auch. Und das, obwohl alle den exakt gleichen Datensatz zur Verfügung hatten.

Die Unterschiede ergeben sich zum Beispiel aus folgenden Punkten:

  • Was sind die Annahmen über die Verteilung der Daten?
  • Können sich Schiedsrichter und Spieler beeinflussen?
  • Sind rote Karten voneinander unabhängig?
  • Werden alle Variablen in die Analyse miteinbezogen? „Gut zwei Drittel der Teams hatten beispielsweise die Position des Spielers auf dem Platz berücksichtigt, aber nur drei Prozent die Gesamtzahl der Platzverweise, die ein Schiedsrichter verhängte.“

Und was folgt daraus? Sind Analysen nicht mehr zu trauen? Natürlich nicht, aber wie so oft hilft ein Bewusstsein, dass auch Datenanalysen keine in Stein gemeisselten Ergebnisse produzieren. Wie im Journalismus gilt auch hier: Transparenz erhöht die Glaubwürdigkeit.

The best defense against subjectivity in science is to expose it. Transparency in data, methods, and process gives the rest of the community opportunity to see the decisions, question them, offer alternatives, and test these alternatives in further research.

Studie „Many Analysts, One Data Set“

Hat eine schwarze Hautfarbe nun Einfluss auf Platzverweise? Zwei Drittel der Analysen sagen „ja“, ein Drittel „nein“.

via WZB Data Science Blog

Schreibe einen Kommentar